Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tarimala Seshadri, Ulrich Flörke* and Gerald Henkel

Department Chemie, Fakultät für
Naturwissenschaften, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn,
Germany
Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.049$
$w R$ factor $=0.124$
Data-to-parameter ratio $=19.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(8-Quinolyl)-o-(1,1,3,3-tetramethylguanidino)phenylamine

The molecular structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5}$, shows two strong intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In contrast, intermolecular interactions are weak.

Received 11 February 2004 Accepted 13 February 2004 Online 20 February 2004

Comment

The primary amino group in the ligand N -(8-quinolyl)- o phenylendiamine can undergo several substitution reactions and a variety of Schiff base derivatives can be prepared to obtain hitherto unknown hexa- and octadentate ligands which provide access to multinuclear metal complexes.

In the present study, we report the crystal structure of the title compound, (I), containing a highly basic tetramethylguanidine group, namely N-(8-quinolyl)-o-(1,1,3,3tetramethylguanidino)phenylamine. The molecular structure (Fig. 1) displays the orientation of the quinolyl plane relative to the substituted phenyl ring. The angle between planes N3/ $\mathrm{C} 1-\mathrm{C} 9$ and $\mathrm{C} 10-\mathrm{C} 15$ is $31.61(5)^{\circ}$ and the torsion angle $\mathrm{C} 9-$ $\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$ is $-17.3(2)^{\circ}$. The $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle at the $s p^{3}$ atom N 2 is enlarged to $129.9(1)^{\circ}$ and the two $\mathrm{C}-\mathrm{N}$ bond lengths are similar $[\mathrm{C} 9-\mathrm{N} 2=1.375$ (2) \AA and $\mathrm{C} 10-\mathrm{N} 2=$ $1.395(2) \AA$ A $]$. The $\mathrm{C} 16=\mathrm{N} 1$ double bond measures 1.303 (2) \AA, and the torsion angle $\mathrm{C} 16-\mathrm{N} 1-\mathrm{C} 15-\mathrm{C} 10$ between the guanidine moiety and the attached phenyl ring is $-141.5(1)^{\circ}$. This molecular geometry is accompanied by two intramolecular hydrogen bonds [$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$ with $\mathrm{H} \cdots \mathrm{N}=$ $2.17 \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}=106^{\circ}$, and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3$ with $\mathrm{H} \cdots \mathrm{N}=$

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Crystal packing of (I), viewed along [001].
$2.25 \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{H}=103^{\circ}$]. The shortest non-bonding intermolecular contact is $\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 1\left(1-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ with $\mathrm{H} \cdots \mathrm{N}=2.52 \AA$. (These values have been normalized for $\mathrm{N}-\mathrm{H}=1.03 \AA$ and $\mathrm{C}-\mathrm{H}=1.08 \AA$, whereas those in Table 2 are uncorrected.) Fig. 2 shows the crystal packing of (I).

Studies are now in progress to examine the coordination properties of this ligand.

Experimental

Compound (I) was prepared by transformation of the primary amine functionality in its precursor into guanidine by reacting it with Vilsmeyer salt $\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{CCl}\right] \mathrm{Cl}$, which, in turn, was obtained by the reaction of tetramethylurea with phosgene (Kantlehner et al., 1984). The free base was obtained by deprotonation of the resulting hydrochloride using a two-phase system of $\mathrm{MeCN} / 50 \%$ aqueous KOH. Suitable crystals were obtained by slow evaporation of a saturated solution in acetonitrile. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.66$ $(d, 1 \mathrm{H}, J=1.5,4.1 \mathrm{~Hz}), 8.56(s, 1 \mathrm{H}), 7.93(d, J=1.6,7.3 \mathrm{~Hz}), 7.51-7.43$ $(m, 1 \mathrm{H}), 7.43(d, 1 \mathrm{H}, 12 \mathrm{~Hz}), 7.30-7.23(m, 2 \mathrm{H}), 7.03(d, 1 \mathrm{H}, 8 \mathrm{~Hz})$, 6.83-6.78 ($\mathrm{m}, 2 \mathrm{H}$), 6.63-6.58 ($\mathrm{m}, 1 \mathrm{H}$), $2.56(\mathrm{~s}, 12 \mathrm{H})$.IR (KBr, v $\left.\left[\mathrm{cm}^{-1}\right]\right): 3317$ (m), 3032 (w), 3920 (w), 2920 (w), 2885 (w), 1607 (m), 1580 (s), 1562 (s), 1513 (s), 1375 (ms), 1148 (m), 1022 (ms), 815 (m), 740 (m).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \\
& M_{r}=333.43 \\
& \text { Monoclinic, } P 2_{d} / c \\
& a=9.2842(5) \AA \\
& b=12.2427(7) \AA \\
& c=16.3490(9) \AA \\
& \beta=101.463(1)^{\circ} \\
& V=1821.22(17) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.922, T_{\text {max }}=0.991$
14968 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0574 P)^{2}\right. \\
& \quad+0.3663 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

N2-C9	$1.3746(16)$	N $4-\mathrm{C} 17$	$1.4474(18)$
N2-C10	$1.3952(16)$	$\mathrm{N} 4-\mathrm{C} 18$	$1.4543(18)$
N1-C16	$1.3025(16)$	$\mathrm{N} 5-\mathrm{C} 16$	$1.3616(16)$
N1-C15	$1.4017(16)$	N5-C19	$1.4494(19)$
N4-C16	$1.3715(17)$	N5-C20	$1.4564(18)$
C9-N2-C10	$129.89(11)$	C16-N5-C20	$121.62(12)$
C16-N1-C15	$120.65(11)$	C19-N5-C20	$115.91(12)$
C16-N4-C17	$121.42(12)$	N1-C16-N5	$119.63(12)$
C16-N4-C18	$121.60(12)$	N1-C16-N4	$125.68(12)$
C17-N4-C18	$115.95(12)$	N5-C16-N4	$114.67(11)$
C16-N5-C19	$119.82(11)$		

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	0.88	2.22	$2.6545(14)$	110
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3$	0.88	2.29	$2.6808(16)$	107
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.65	$3.5818(18)$	167
Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$				

H atoms were placed at calculated positions, riding on their parent C and N atoms, with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ and $1.5 U_{\text {eq }}(\mathrm{C}$ methyl). All methyl groups were allowed to rotate but not to tip.

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Kantlehner, W., Haug, E., Mergen, W. W., Speh, P., Maier, J., Kapassakalidis, J., Bräuner, H.-J. \& Hagen, H. (1984). Liebigs Ann. Chem. pp. 108-126.

